53
Rhizospheric Microbial Inoculation in Developing Stress Tolerance
Elakhdar, I., Elshikh, M., Allam, N., Kamal, F., & Staehelin, C., (2019). Evaluation of salt-
tolerant Azospirillum spp. and its role in improvement of wheat growth parameter. EBSS.,
3, 15–17. 10.21608/jenvbs.2019.16428.1069.
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A., (2009). Plant drought
stress: Effects, mechanisms, and management. Sustain. Agric., 153–188.
Fasciglione, G., Casanovasa, E. M., Quillehauquya, V., Yommi, A. K., Goñi, M. G., Rourab,
S. I., & Barassia, C. A., (2015). Azospirillum inoculation effects on growth, product quality
and storage life of lettuce plants grown under salt stress. Sci. Hortic., 195, 154–162.
Finkel, O. M., Castrillo, G., Paredes, S. H., González, I. S., & Dangl, J. L., (2017).
Understanding and exploiting plant beneficial microbes. Plant Biol., 38, 155–163.
Glick, B. R., (2010). Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv., 28,
367–374.
Goswami, D., Thakker, J. N., & Dhandhukia, P. C., (2015). Simultaneous detection and
quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by
rhizobacteria from l-tryptophan (Trp) using HPTLC. J. Microbiol. Method., 110, 7–14.
Grover, M., Bodhankar, S., Sharma, A., Sharma, P., Singh, J., & Nain, L., (2021). PGPR
mediated alterations in root traits: Way toward sustainable crop production. Front. Sust.
Food Syst., 4, 287–298.
Gupta, G., Panwar, J., & Jha, P. N., (2013). Natural occurrence of Pseudomonas aeruginosa:
A dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum
(L.) R. Br. Appl. Soil Ecol., 64, 252–261.
Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Huqail, A. A., Egamberdieva, D., & Wirth,
S., (2016). Alleviation of cadmium stress in Solanum lycopersicum L. by Arbuscular
mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J. Biol. Sci., 23,
272–281.
Hayat, R., Amara, U., Khalid, R., & Ahmed, I., (2010). Soil beneficial bacteria and their role
in plant growth promotion: A review. Ann. Microbiol., 60, 579–598.
Hernaández-Esquivel, A. A., Castro-Mercado, E., Valencia-Cantero, E., Alexandre, G., &
García-Pineda, E., (2020). Application of Azospirillum brasilense lipopolysaccharides to
promote early wheat plant growth and analysis of related biochemical responses. Front.
Sustain. Food Syst., 4, 579976. doi: 10.3389/fsufs.2020.579976.
Jiang, S., Zhang, D., Wang, L., Pan, J., Liu, Y., Kong, X., Zhou, Y., & Li, D., (2013). A
maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid
signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol.
Biochem., 71, 112–120.
Kasim, W. A., Gaafara, R. M., Abou-Alib, R. M., Omar, M. N., & Hewait, H. M., (2016).
Effect of biofilm-forming plant growth promoting rhizobacteria on salinity tolerance in
barley. Ann. Agric. Sci., 61, 217–227.
Khadka, R. B., & Uphoff, N., (2019). Effects of Trichoderma seedling treatment with system
of rice intensification management and with conventional management of transplanted rice.
Peer J., 7, e5877. doi: 10.7717/peerj.5877.
Krishnamoorthy, R., Kim, K., Subramanian, P., Senthilkumar, M., Anandham, R., & Sa, T.,
(2016). Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected
soil enhance the tolerance of maize to salinity in coastal reclamation soil. Agric. Ecosyst.
Environ., 231, 233–239.