53

Rhizospheric Microbial Inoculation in Developing Stress Tolerance

Elakhdar, I., Elshikh, M., Allam, N., Kamal, F., & Staehelin, C., (2019). Evaluation of salt-

tolerant Azospirillum spp. and its role in improvement of wheat growth parameter. EBSS.,

3, 15–17. 10.21608/jenvbs.2019.16428.1069.

Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A., (2009). Plant drought

stress: Effects, mechanisms, and management. Sustain. Agric., 153–188.

Fasciglione, G., Casanovasa, E. M., Quillehauquya, V., Yommi, A. K., Goñi, M. G., Rourab,

S. I., & Barassia, C. A., (2015). Azospirillum inoculation effects on growth, product quality

and storage life of lettuce plants grown under salt stress. Sci. Hortic., 195, 154–162.

Finkel, O. M., Castrillo, G., Paredes, S. H., González, I. S., & Dangl, J. L., (2017).

Understanding and exploiting plant beneficial microbes. Plant Biol., 38, 155–163.

Glick, B. R., (2010). Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv., 28,

367–374.

Goswami, D., Thakker, J. N., & Dhandhukia, P. C., (2015). Simultaneous detection and

quantification of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) produced by

rhizobacteria from l-tryptophan (Trp) using HPTLC. J. Microbiol. Method., 110, 7–14.

Grover, M., Bodhankar, S., Sharma, A., Sharma, P., Singh, J., & Nain, L., (2021). PGPR

mediated alterations in root traits: Way toward sustainable crop production. Front. Sust.

Food Syst., 4, 287–298.

Gupta, G., Panwar, J., & Jha, P. N., (2013). Natural occurrence of Pseudomonas aeruginosa:

A dominant cultivable diazotrophic endophytic bacterium colonizing Pennisetum glaucum

(L.) R. Br. Appl. Soil Ecol., 64, 252–261.

Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Huqail, A. A., Egamberdieva, D., & Wirth,

S., (2016). Alleviation of cadmium stress in Solanum lycopersicum L. by Arbuscular

mycorrhizal fungi via induction of acquired systemic tolerance. Saudi J. Biol. Sci., 23,

272–281.

Hayat, R., Amara, U., Khalid, R., & Ahmed, I., (2010). Soil beneficial bacteria and their role

in plant growth promotion: A review. Ann. Microbiol., 60, 579–598.

Hernaández-Esquivel, A. A., Castro-Mercado, E., Valencia-Cantero, E., Alexandre, G., &

García-Pineda, E., (2020). Application of Azospirillum brasilense lipopolysaccharides to

promote early wheat plant growth and analysis of related biochemical responses. Front.

Sustain. Food Syst., 4, 579976. doi: 10.3389/fsufs.2020.579976.

Jiang, S., Zhang, D., Wang, L., Pan, J., Liu, Y., Kong, X., Zhou, Y., & Li, D., (2013). A

maize calcium-dependent protein kinase gene, ZmCPK4, positively regulated abscisic acid

signaling and enhanced drought stress tolerance in transgenic Arabidopsis. Plant Physiol.

Biochem., 71, 112–120.

Kasim, W. A., Gaafara, R. M., Abou-Alib, R. M., Omar, M. N., & Hewait, H. M., (2016).

Effect of biofilm-forming plant growth promoting rhizobacteria on salinity tolerance in

barley. Ann. Agric. Sci., 61, 217–227.

Khadka, R. B., & Uphoff, N., (2019). Effects of Trichoderma seedling treatment with system

of rice intensification management and with conventional management of transplanted rice.

Peer J., 7, e5877. doi: 10.7717/peerj.5877.

Krishnamoorthy, R., Kim, K., Subramanian, P., Senthilkumar, M., Anandham, R., & Sa, T.,

(2016). Arbuscular mycorrhizal fungi and associated bacteria isolated from salt-affected

soil enhance the tolerance of maize to salinity in coastal reclamation soil. Agric. Ecosyst.

Environ., 231, 233–239.